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A liquid drop placed on a vibrating diaphragm will burst into a fine spray of
smaller secondary droplets if it is driven at the proper frequency and amplitude. The
process begins when capillary waves appear on the free surface of the drop and then
grow in amplitude and complexity as the acceleration amplitude of the diaphragm
is slowly increased from zero. When the acceleration of the diaphragm rises above
a well-defined critical value, small secondary droplets begin to be ejected from the
free-surface wave crests. Then, quite suddenly, the entire volume of the drop is ejected
from the vibrating diaphragm in the form of a spray. This event is the result of an
interaction between the fluid dynamical process of droplet ejection and the vibrational
dynamics of the diaphragm. During droplet ejection, the effective mass of the drop–
diaphragm system decreases and the resonance frequency of the system increases. If
the initial forcing frequency is above the resonance frequency of the system, droplet
ejection causes the system to move closer to resonance, which in turn causes more
vigorous vibration and faster droplet ejection. This ultimately leads to drop bursting.
In this paper, the basic phenomenon of vibration-induced drop atomization and drop
bursting will be introduced, demonstrated, and characterized. Experimental results
and a simple mathematical model of the process will be presented and used to explain
the basic physics of the system.

1. Introduction
In this paper, a new method for the atomization of a liquid, called vibration-induced

drop atomization (VIDA), is introduced and studied. In the simplest VIDA process,
a liquid drop is placed on a thin, circular metal diaphragm that is excited to vibrate
sinusoidally by an attached piezoelectric ceramic disk. As a result of these vibrations,
stationary axisymmetric standing waves are induced on the drop surface. Above
a critical value of the excitation amplitude, an instability of the drop free surface
occurs in which subharmonic azimuthal free-surface waves appear. These waves grow
in amplitude and complexity as the excitation amplitude is increased. When the
excitation amplitude is increased beyond a second well-defined critical value small
secondary droplets begin to be ejected from the wave crests. At this point, without
any further change in the excitation amplitude, the droplet-ejection process intensifies
until suddenly, sometimes within a half a second or so, the entire primary drop
breaks into a spray of smaller (between one and two orders of magnitude) secondary
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droplets directed away from the diaphragm. Under certain conditions droplet ejection
occurs so rapidly that the primary drop appears to atomize instantaneously. This
event is called drop bursting, as opposed to droplet ejection, which refers to the
detachment of a single droplet from the free surface of the larger primary drop.
Additional experiments by the current authors (unpublished) and by Yule & Al-
Suleimani (2000) on a scaled-up model of ultrasonic liquid atomization have shown
that small secondary droplets can be ejected from multiple sites on a thin liquid layer
instead of a drop. This opens the possibility that a continuous spray of small droplets
can be created as long as the liquid film is continually replenished. The present work,
however, focuses exclusively on the atomization of a single drop.

Numerous investigations, both experimental and theoretical, on the vibration of
liquid films and drops have been presented in the literature. However, the majority
of this work is limited to the formation and dynamics of the resulting surface waves.
The formation of waves on the surface of a liquid layer due to vertical vibration
was first reported by Faraday (1831). Several authors have used linear stability
theory to determine the threshold forcing amplitude required for wave formation
on a liquid layer, such as Benjamin & Ursell (1954) and Kumar & Tuckerman
(1994). The nonlinear dynamics of Faraday waves have been studied analytically by
Nayfeh & Nayfeh (1990), Miles (1993), Decent & Craik (1995), and Zhang & Vinals
(1997). Numerous experiments have been performed to characterize the response of
Faraday waves to the forcing amplitude and frequency, such as Ciliberto & Gollub
(1985), Edwards & Fauve (1994), and Jiang et al. (1996), for example. Giavedoni
(1995) presented a nonlinear finite-element simulation of Faraday waves. For a basic
reference on Faraday waves, see the review by Miles & Henderson (1990).

The free oscillations of a drop attached to a solid surface have been studied ex-
perimentally by DePaoli, Scott & Basaran (1992), numerically by Basaran & DePaoli
(1994) and Gañán & Barrero (1990), and theoretically for inviscid drops by Strani &
Sabetta (1984) and for viscous drops by Strani & Sabetta (1988). In these studies, the
oscillatory mode shapes and resonance frequencies of the attached drop have been
determined as a function of the various system parameters.

The forced oscillation of a drop attached to a solid surface has received less
attention. The first experiments seem to be those of Rodot, Bisch & Lasek (1979).
These researchers immersed a drop of one liquid attached to a solid cylindrical
support into a second immiscible liquid of the same density in order to simulate
zero-gravity conditions. They forced the drop by oscillating the support vertically.
The largest displacement amplitude was 1 mm (no more than one-third of the radius
of the cylindrical support) and the forcing frequency was always less than 10 Hz.
This corresponds to driving accelerations no more than about 0.4 g (where g is the
acceleration due to gravity on Earth). Under these conditions, the authors observed
the first five axisymmetric modes of drop oscillation and large drop deformations.
They even reported droplet ejection in which the drop forms a neck near the support
that ultimately breaks under some experimental conditions.

Wilkes & Basaran (1997) studied forced drop oscillations numerically using the
finite-element method. In their model, a liquid drop is surrounded from above by
a passive ambient gas and is forced by the vertical motion of a solid support. The
displacement amplitudes used were less than or equal to 20% of the support radius
and the largest dimensionless frequency was Ω = 15. This corresponds to driving
accelerations no more than about 13 g (for a water drop on a support of radius
5 mm). These authors computed the first three modes of drop oscillation and also
observed large drop deformations.
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Very few researchers have investigated the use of forced excitation to create droplet
ejection. Sorokin (1957) presented photographs of chaotic droplet ejection from a
vertically vibrated water-filled vessel and determined the energy required for ejection.
Woods & Lin (1995) reported atomization of a liquid layer into a micron-sized spray
by means of a vibrating cantilevered beam. Goodridge et al. (1997) established a
threshold acceleration for droplet ejection from a liquid layer in a vertically oscillating
container. They concluded that the threshold acceleration depends only on surface
tension and forcing frequency for low-viscosity fluids and only on viscosity and
forcing frequency for high-viscosity fluids. Wilkes & Basaran (1998, 2001) extended
the work of Wilkes & Basaran (1997), by increasing the forcing amplitude to the
point where they observed the onset of droplet ejection at a critical dimensionless
forcing amplitude of Ac = 0.273. They defined droplet ejection to be when the radius
of the neck that forms is 0.2% of the support radius. One example from their latter
work is a computation of a droplet ejection event for a set of parameters that
corresponds to zero gravity and (for a water drop on a support of radius 5 mm)
a driving frequency of 13.4 Hz, an amplitude of 1.37 mm, and an acceleration of
0.99 g (see their figure 8). Jiang, Perlin & Schultz (1998) generated steep standing
two-dimensional Faraday waves in a rectangular tank at a fundamental frequency of
1.60 Hz. They showed that increasing the forcing amplitude produced a period-tripled
wave-breaking behaviour related to a nonlinear interaction between the fundamental
mode and its second temporal harmonic. They observed one wave profile occurring
every third wave (their mode A) in which a steep wave produced an upward jet that
broke to eject a cylindrical ‘droplet’. The relationships between this previous work
and the single-droplet ejection process observed in drop bursting will be explored in
a future publication.

The possibility of atomization of a drop by means of induced vibrations was
reported by Lee, Anilkumar & Wang (1991) in their study of acoustically levitated
drops. They presented images of a drop being atomized on a vibrating diaphragm
instead of being levitated, but they reported no other results on this effect. In
Smith et al. (1998) the present authors first reported their observations of drop
atomization and drop bursting. We also presented the mathematical model used in
the present work and discussed some preliminary comparisons between experimental
data and simulations using this model. Vukasinovic, Glezer & Smith (2000) used
the same experimental apparatus as in the present work and showed a visualization
of vibration-induced drop atomization of a sessile drop. In Vukasinovic, Glezer &
Smith (2001), a sequence of transitions that were observed in the drop as the driving
amplitude was increased from zero were shown. In these visualizations, we considered
small-amplitude forcing on the order of 100 µm or less, but used forcing frequencies
on the order of 1000 Hz. These conditions imply a maximum forcing acceleration on
the order of 400 g. This combination of large forcing frequencies and accelerations
enabled us to excite the higher modes observed in the drop. This is the key to
producing multiple droplet ejection sites over the entire free surface of the primary
drop. Also, it is these driving conditions that distinguish this work from the previous
work on forced drop oscillations by Rodot et al. (1979) and Wilkes & Basaran (1997,
1998, 2001).

The present work will report both qualitative and quantitative data on vibration-
induced drop atomization and bursting. The purpose is to document the physical
nature and character of these processes. To this end, observations of the different
kinds of instabilities, droplet ejection, and drop bursting for a water drop placed
on a vibrating surface are presented in § 2. In § 3, the experimental apparatus and
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protocols used are discussed. The experimental data that characterize the drop–
diaphragm system response lead to a simple mathematical model that explains the
drop-bursting process. The formulation of this model is presented in § 4. In § 5, results
from the experiments and the model are presented and compared. The mathematical
model is linearized in § 6 to demonstrate the robust physics captured by this simple
model. Finally, in § 7, conclusions, some directions for future work, and other potential
applications of drop bursting are discussed.

2. Drop bursting
Before the details of the experiment and the mathematical model are described,

a few visualizations of drop bursting are presented in order to introduce this novel
phenomenon. For each figure shown below, a 100 µl water drop was placed at the
centre of a horizontal circular metal diaphragm. The diaphragm was clamped at its
periphery and excited by a piezoelectric ceramic disk so that it vibrated in the vertical
direction in its fundamental axisymmetric mode.

Figure 1 shows a sequence of video frames of a drop as the excitation amplitude
is slowly increased and then held fixed for a long enough time for transient motions
associated with the amplitude increase to die out. The frequency is fixed at 987 Hz.
Figure 1(a) shows the unforced drop for reference. For small values of the excitation
amplitude, axisymmetric standing waves exist on the free surface of the drop as
shown in figure 1(b). These waves have the same frequency as the excitation and
are present at even very small values of the excitation amplitude. Above a critical
excitation amplitude, an azimuthal mode of instability is triggered along the contact
line of the drop. This mode couples with the existing axisymmetric waves to produce
an azimuthal high-wavenumber wave on the free surface of the drop (figure 1c). This
wave is at first stationary, but then experimental imperfections cause it to slowly rotate
along the periphery of the drop in either the clockwise or counterclockwise direction.
This instability is also signalled by the appearance of a subharmonic frequency in the
free-surface motion – the signature of a classic Faraday-wave instability. When the
excitation amplitude is increased further, the free-surface waves increase in magnitude
and complexity and become time dependent (figure 1d ). The development of distinct
craters and liquid spikes that are in continual time-dependent motion are shown in
figure 1(e). Finally, figure 1( f ) shows the initial phase of the bursting process.

The rate of droplet ejection depends on the excitation amplitude, but more inter-
esting is the fact that for a fixed excitation amplitude the rate of droplet ejection may
increase or decrease with time. When droplet ejection begins, wave motion and the
droplet ejection sites seem to be evenly distributed over the entire free surface of the
drop. The most interesting event, bursting, occurs at some finite time after the first
appearance of droplet ejection. The length of this time interval depends on the excita-
tion amplitude. When a large excitation signal is suddenly applied to the diaphragm,
bursting occurs almost immediately. For smaller excitation amplitudes (but still large
enough), bursting may be delayed by on the order of seconds to perhaps a minute
or more after the forcing is applied. In some instances bursting does not occur at all,
even though droplet ejection is present.

The sequence of images presented in figure 2 shows what happens when a step-
function-modulated sinusoidal excitation signal with a prescribed frequency and
amplitude is applied to the diaphragm. Note that all of the different modes of
instability on the drop free surface described in the previous case are still present.
There is the initiation of axisymmetric waves in figure 2(b), the growth of the
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(a) (b)

(c) (d)

(e) ( f )

Figure 1. A sequence of video frames showing the side view of a 100 µl liquid drop (diameter
≈ 8 mm) on a diaphragm vibrating at 987 Hz. The excitation frequency is held fixed. The excitation
amplitude is slowly increased from image (a) to image ( f ), and is held fixed for a long enough
time for transient motions associated with the increase to die out before each image is taken. (a)
The undisturbed drop, (b) axisymmetric standing waves on the free surface at small excitation
amplitudes, (c) the appearance of stationary and then slowly rotating azimuthal waves on the free
surface, (d ) intense time-dependent wave motion over the entire drop free surface, (e) the appearance
of time-dependent craters and liquid spikes, and ( f ) the rapid-ejection process of small secondary
droplets (bursting).

azimuthal instability in figure 2(c), and the development of complex wave patterns
and bursting in the remaining images. The time from the initiation of the excitation
until the first secondary droplets are ejected is about 8 forcing periods (figure 2d). In
real time, this is only 8 ms. Figure 2(i ) is approximately when the entire primary drop
is completely atomized. For this case, the bursting event took about 0.3 s.

Two close-up views of the free surface of a primary drop undergoing droplet
ejection are shown in figure 3. The field of view of each picture is 3× 3 mm. In (a),
a liquid spike appears, grows, and then there is the appearance and growth of a
secondary droplet on its tip that eventually pinches off with an upward velocity.
In (b), a liquid spike appears with a droplet at its tip. The spike is shrinking, but the
secondary droplet continues to form and eventually it pinches off, although this time
it has a downward velocity. (This form of droplet ejection is in qualitative agreement
with the computations of Wilkes & Basaran 1998, 2001.) In spite of the fact that
the initial motion of the ejected droplet is toward the primary drop in this case, the
secondary droplet and the primary drop may never coalesce. For low-viscosity fluids
like water, secondary droplets usually bounce off the waves on the primary drop’s free
surface, and may continue to do so many times. The reason for this is that the time
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

Figure 2. A time sequence of images of a 100µl liquid drop (diameter ≈ 8 mm) on a vibrating
diaphragm forced by a step-function-modulated sinusoidal excitation. The frequency (987 Hz) and
the amplitude are fixed. (a) t/T = 0, (b) t/T = 4.3, (c) t/T = 5.9, (d ) t/T = 8.1, (e) t/T = 9.2, ( f )
t/T = 10.3, (g) t/T = 14.6, (h) t/T = 16.2, (i ) t/T = 273.8. Here, t is the time and T ≈ 1 ms is the
forcing period.

(a)

(b)

Figure 3. Two sequences of single droplet ejection from the free surface of a primary drop. The
frequency (987 Hz) and amplitude of the excitation are held constant. The field of view is 3× 3 mm.
In (a), the ejected droplet has a velocity away from the primary drop; in (b), the ejected droplet has
a velocity toward the primary drop.

scale for the rupture of the gas film between a secondary droplet and the primary
drop is much larger than the time scale (≈ 1 ms) for the motion of the waves on the
free surface of the primary drop. Thus, the secondary droplet continues to bounce
off the primary drop’s wavy free surface until it either reaches the surface of the
diaphragm or until it finally coalesces with the primary drop.

When droplet ejection begins (and even just before this state), the wave motion on
the free surface of the primary drop appears to be mostly chaotic. Thus, any single
ejection event is not the result of a steadily growing free surface wave that eventually
terminates in droplet ejection. Figure 4 shows the best time-resolved sequence of
images for a full droplet ejection event, given the constraint of the video-frame-
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(a) (b) (c)

(d) (e) ( f )

Figure 4. A time sequence of images taken at 3000 fr/s of a single secondary droplet ejection event
from a drop forced at 987 Hz with a constant excitation amplitude. The field of view is 2 × 2 mm.
The total time span of the sequence is 1.4 forcing periods (≈ 1.4 ms).

sampling rate. During the chaotic wave motion on the free surface of the primary
drop a depression, or crater, precedes the rising liquid spike that ultimately ejects the
secondary droplet. This is similar to the spike observed after the collapse of a cavity
caused by an air bubble that has just broken through the free surface of a liquid layer
from below, as presented in the work of Newitt, Dombrowski & Knelman (1954),
and later by Snyder & Reitz (1998).

Another phenomenon to which bursting can be compared is the impact of a drop
on a solid surface or a liquid layer. In either case a crater is formed, followed by
a jet that may eject several secondary droplets. A particularly famous example is
shown in the beautiful strobe-lit photograph of a splashing milk drop by Edgerton
& Killian (1939). Fukai et al. (1995) presented an experimental and numerical study
of the evolution of a drop impacting a solid surface. Pumphrey & Crum (1988) and
Pumphrey, Crum & Bjørnø (1989) presented images of a liquid drop impacting a
tank full of liquid. They were primarily interested in the underwater sound caused
by air bubbles that sometimes form, but their images show the formation of a crater
that is sometimes followed by a jet that ejects secondary droplets. They note that
when the impact velocity is large enough, ‘the resulting collapsing air cavity often
ejects drops back into the air’ (Pumphrey & Crum 1988). Additionally, one of their
images (figure 5g, Pumphrey et al. 1989) is strikingly similar to figure 4(d ). It shows a
conical spike with a spherical drop on the end. Oǧuz & Prosperetti (1990) presented
numerical simulations of the experiments of Pumphrey & Crum (1988) and Pumphrey
et al. (1989) using a boundary-element method. Their work verified that the formation
of a crater may result in a droplet-ejecting jet.

Formation of a crater also seems to be important in the present work. This event
may be a necessary condition in order for the resulting wave crest, or jet, to have
sufficient momentum to eject a secondary droplet and to propel it away from the
primary drop. Further study of this structure and its behaviour is presented in a
companion paper, James, Smith & Glezer (2003).

Two contrasting cases of secondary droplet ejection with approximately the same
level of forcing are presented in figure 5. In figure 5(a), there is the short conical spike
with a large droplet forming on its tip that was also shown in figure 4. Figure 5(b),
however, shows a spike that looks like a fluid jet undergoing a Rayleigh capillary
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(a) (b)

Figure 5. Two distinctive secondary-droplet ejections. (a) A large droplet forming at the tip of a
conical spike, and (b) the initial stages of small-droplet formation as a result of a Rayleigh capillary
instability of a liquid jet.

instability in addition to having a small droplet forming at its tip. In this case, the jet
usually develops into several droplets resulting in multiple secondary-droplet ejections.

With this introduction to VIDA and drop bursting, the goal for the remainder of
this paper is to explain and characterize the bursting events seen in figures 1 and 2.
In the sections that follow, quantitative results from several experiments and from a
simple mathematical model of the bursting process will be presented. Identifying and
characterizing the mechanism of a single secondary-droplet-ejection event, as shown
in figures 3–5, is considered in James et al. (2003).

3. Experimental setup
The experimental setup for this work is shown in figure 6. The transducer used

to vibrate the liquid drop was a circular iron–nickel diaphragm 32 mm in diameter
and 0.1 mm thick. A piezoelectric ceramic (PZT, 20 mm diameter, 0.12 mm thickness)
was plated onto a small circular area centred on the lower surface of the diaphragm
to create a unimorph structure. The diaphragm was mounted in an aluminium ring
holder by clamping the outer edge with a retaining ring. The inside diameter of
this ring and thus the active diameter of the vibrating diaphragm was 30 mm. The
diaphragm was excited using a signal generator coupled to an amplifier that applied a
sinusoidal voltage to the piezoelectric ceramic. This caused the ceramic to expand and
contract, which induced the diaphragm to vibrate in its fundamental axisymmetric
mode. The frequency and voltage applied to the piezoelectric ceramic were monitored
and controlled. For the experiments discussed in § 5, the forcing voltage was turned on
instantaneously using a step-function modulation of the amplitude. In the diaphragm
characterization studies of § 4, the voltage amplitude was held fixed at each frequency.

Because of its low mass the mechanical resonance frequency of the transducer is
around 1 kHz and it is capable of providing extremely large accelerations. The present
transducer is capable of delivering maximum accelerations up to 1000 g. However, to
prevent accidental damage to the transducer, the maximum acceleration in almost
all experiments conducted in the present work was limited to less than 350 g, which
corresponds to a displacement magnitude of less than 90µm. Besides the magnitude
of acceleration, the present transducer differs from conventional shakers in its spatial
variation of the forcing imposed on a drop (the acceleration ranges from zero at the
edge of the diaphragm to a maximum at the centre). For a 200 µl water drop (the
drop volume used in the bursting experiments reported in § 5), the acceleration varies
by 22% from the centre of the drop to the contact line, while for a 100µl water
drop (the drop volume used in the visualization studies shown in § 2), the variation is
only 15%.
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Micro-pipette
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AccelerometerTo amplifier Piezoelectric
ceramic

Figure 6. A sketch of the experimental setup for the VIDA and drop-bursting experiments.

The acceleration of the diaphragm was measured using a microfabricated ac-
celerometer (Endevco 25A) glued to the centre of the piezoelectric ceramic on the
lower surface of the diaphragm. The accelerometer had a range of 350 g and a
precision of ±0.2 g. Given a fixed forcing frequency, nominally about 1 kHz, only
the oscillation amplitude of the output from the accelerometer was recorded. This
amplitude was obtained with a small electrical circuit that squared and low-pass-
filtered (40 Hz) the voltage signal from the accelerometer. The resulting signal was
then sampled at a rate of 1000 Hz. The division by 2 and square-root were taken once
the signal was discretized.

The temperature of this device had a slight effect on the resonance frequency of
the diaphragm. This relationship was determined experimentally by monitoring the
temperature of the aluminium retaining ring with an embedded thermocouple. The
small, but normal, variation in the ambient temperature during the course of many
experiments was recorded and this relationship was then used to correct the final
results so that they were more repeatable.

A strict cleaning protocol was used on the upper surface of the diaphragm prior
to each run in order to reduce any possible contamination of the free surface of
the drop and to promote the repeatability of the results. At the beginning of each
set of experiments, an air duster was used to remove any microscopic dust that
may have been present on the dry diaphragm. The cleaning procedure used before
each individual experiment consisted of the following steps: coarse removal of all
secondary droplets with a pipette, drying of the diaphragm surface with a tissue,
surface cleaning with acetone, and finally, surface rinsing with distilled water.

A micro-pipette (Eppendorf 200) was used to place varying amounts of distilled
water at the centre of the upper surface of the diaphragm in all of these experiments.
This micro-pipette has a volume range of 100 to 200µl and a precision of 0.2µl. The
placement of the drops at the centre of the diaphragm was accurate to about 0.5 mm.
In addition to sampling the acceleration amplitude, the free-surface motion of the
droplet and the evolution of the bursting process were recorded using a Kodak SR-
Ultra high-speed video camera with a 1/10 000 s shutter speed and a video-framing
rate of up to 3000 fr/s.

In its simplest form, the drop-bursting phenomenon is a resonance interaction
between the liquid drop as it undergoes droplet ejection and the vibrating diaphragm.
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Figure 7. Frequency response curves for a dry diaphragm. The applied r.m.s. voltage for each
curve is: 0.31 V (©), 0.70 V (�), 1.39 V (4), 2.79 V (5), 4.18 V (�), 5.56 V (�), 6.93 V (+), and
13.86 V (×). The acceleration amplitude is in g and the frequency is relative to the linear resonance
frequency of 982 Hz.

A simple mathematical model for the vibration of a one-degree-of-freedom system,
as described in the next section, is capable of duplicating this interaction. To make
this model both predictive and faithful with respect to the experimental data, it is
necessary to quantify the vibrational characteristics of the dry diaphragm as closely
as possible, i.e. accurate values for the stiffness and damping of the diaphragm are
needed. The frequency response of a dry diaphragm in terms of its acceleration
amplitude for various values of the applied r.m.s. voltage is shown in figure 7.

The behaviour of the diaphragm in the range of very weak to moderate forcing
is typical of a slightly soft nonlinear structural member forced near its resonance
frequency. As the forcing amplitude increases, the nonlinearity in the system becomes
more and more pronounced as evidenced by the change in location of the resonance
peak. The resonance frequency first decreases and then increases, indicating that
the nonlinearity in the stiffness changes sign. For the highest levels of forcing, the
acceleration near resonance appears to have a discontinuity in the frequency response.
This is clearly seen in the frequency response curve for the highest voltage level shown
in figure 7. As the acceleration magnitude was outside the accelerometer measurement
range, this frequency response curve was measured by an optical vibrometer (Polytec
3000; range = 1500 g; precision = 2%). Forward and backward frequency sweeps
were conducted in this region and hysteresis in the frequency response was not
detected. For the remainder of the present work, the experiments were conducted
in an acceleration range that excluded this discontinuity. Therefore, drop bursting is
not the result of a shock-induced acceleration jump due to the discontinuity seen in
figure 7.

4. Mathematical model
A simplified model of the vibrating diaphragm–drop system is shown in figure 8.

The diaphragm is modelled as a lumped mass connected to a nonlinear spring, a
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Figure 8. A sketch of the mathematical model of the vibrating diaphragm–drop system for VIDA
and drop bursting.

nonlinear structural damper, and a piezoelectric ceramic forcing element. The lumped
mass includes the mass of the diaphragm, the piezoelectric ceramic, and the attached
accelerometer. The generalized mass of these elements is computed based on the
measured mode shape of the diaphragm in the frequency range of interest. This
computation is discussed in more detail below. The stiffness of the diaphragm is
included using a nonlinear spring function fitted to the observed behaviour of a dry
diaphragm (figure 7). Nonlinear structural damping is used in this model because the
main component of damping in this system is the flexing of the diaphragm itself. The
piezoelectric ceramic element is modelled as a linear spring that can vary its length
in a linear relation with the applied voltage.†

The liquid drop is also modelled as a generalized lumped mass. This mass is
computed by using the actual drop mass, a fixed contact angle, and a spherical-cap
shape for the drop. The same vibratory mode shape of the diaphragm that was used
for the solid components was also used in this calculation.

Droplet ejection is accounted for by decreasing the liquid-drop mass at a rate
that is linearly related to the diaphragm acceleration, if the acceleration is large
enough. Otherwise the drop mass remains fixed. A portion of the ejected droplets
falls back onto the diaphragm. The contribution of this residual mass to the total
generalized mass is computed by assuming that the mass is uniformly distributed on
the diaphragm.

For this mathematical model, the displacement of the diaphragm and the vary-
ing generalized mass of the liquid drop are described by the following differential
equations in time:

mẍ+
c(x)

ω
ẋ+ k(x)x = A cos(ωt), x(0) = 0, ẋ(0) = 0, (1)

m = f(mt, md, mr) (2)

ṁd =

{
0, ẍ < ac

−r (ẍ− ac) , ẍ > ac,
md(0) = m0, (3)

ṁr = −pṁd, mr(0) = 0. (4)

† (Physik Instrumente GmbH & Co. PI Products for Micropositioning, Catalogue Edition E,
CAT.112/D/05.95/13, p. 5.5.)
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Here, x is the displacement of the centre of the diaphragm. The total generalized
mass of the system, m, is composed of mt, the mass of the diaphragm, the piezoelectric
ceramic, and the attached accelerometer, md, the mass of the liquid drop, and mr , the
mass of the residual droplets that have fallen back onto the diaphragm. The nonlinear
structural damping of the system is c(x). This form of damping is used in equation (1)
(as opposed to viscous damping) because the damping in this system is a result of the
flexing of the diaphragm. This flexing motion is why the damping coefficient depends
on x, a measure of the deflection of the diaphragm. (See Thomson 1972, § 3.10 for
an introductory discussion of structural damping.) The nonlinear spring function for
the system is k(x), A is the forcing coefficient derived from the piezoelectric ceramic
element, and ω is the forcing frequency. Finally, r is the rate of droplet ejection from
the primary liquid drop, ac is the critical acceleration above which droplet ejection
occurs, and p is the fraction of ejected droplets that fall back onto the diaphragm.
The system is forced with a pure cosine wave. The amplitude of the oscillations of
the system is the primary output parameter and so the phase of the forcing signal
(sine or cosine) is not important. In addition, the initial transient motion due to
the phase of the forcing and the initial conditions occurs over a time scale that is
much smaller than the time scale at which mass is lost due to droplet ejection. Thus,
these initial transient motions are not important in this study of drop bursting (this
statement will be quantitatively supported in § 5 using the results plotted in figure 15).
The initial drop mass is an important input parameter. However, all of the following
simulations were done with m0 = 0.2 g because most of the other system parameters
were determined and optimized for this drop mass.

These model equations were designed so that when the acceleration of the di-
aphragm is less than the critical value, the primary drop mass remains constant,
the residual mass remains zero, and the oscillation of the diaphragm is governed by
equation (1). In this case, the diaphragm oscillation will reach a periodic state after
a short transient period due to the given initial conditions. If the diaphragm acceler-
ation becomes larger than the critical value, the mass of the primary drop decreases
due to the ejection of secondary droplets as given by equation (3). This critical value
is obtained from experimental observations. Some of the ejected droplets fall back
onto the diaphragm. This is modelled by the rate of increase of residual mass given
by equation (4). The changes in the primary drop mass and the residual mass affect
the total generalized mass of the system through equation (2). (The evaluation of
this term is discussed below.) Finally, the changing drop mass modifies the vibration
of the diaphragm because it appears in the first term of equation (1). In this case
of vibration with droplet ejection the system will also reach a final periodic state.
The transient period has a short part due to the given initial conditions and a much
longer part due to the mass decrease in the system. This longer transient is the
primary interest of the present work.

Equations (1)–(4) were integrated in time using a fourth/fifth-order Runge–Kutta
integrator in matlab (ode45). To compare the numerical results to the experimental
data, the acceleration time response was squared and digitally low-pass-filtered with
the same cutoff frequency of 40 Hz as in the experiments. The results were divided
by 2, a square-root was taken, and they were then plotted. This procedure converts
the high-frequency transient-response acceleration signal to its amplitude. When this
amplitude becomes constant the system has reached a periodic state.

The total generalized mass is the sum of the generalized masses of the diaphragm,
the piezoelectric ceramic, the attached accelerometer, the primary drop, and the
residual droplets. The generalized mass is calculated for each part by integrating the
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density of the material over its volume V, weighted by the first axisymmetric mode
shape of vibration for the dry diaphragm. The integral is

m =

∫ ∫
V

∫
ρψ2 dV. (5)

The mode shape, ψ, is a function of the radial position. The generalized mass is an
effective mass in which the mass at the centre of the diaphragm, where the diaphragm
moves the most, is more heavily weighted than the mass at the edges, where the
diaphragm moves only a little. The mode shape was determined experimentally for
the unloaded diaphragm driven at 1000 Hz and 0.1 V (r.m.s.). It is scaled to be 1 at
the centre. This shape was used to determine all the components of the generalized
mass, even when the diaphragm is loaded and the forcing parameters are different.
This is justified because the forcing frequencies considered are all close enough to
1000 Hz that the same axisymmetric mode shape of the diaphragm will be excited.
Although loading the diaphragm by placing a drop on it will modify the mode shape,
and increasing the forcing voltage will increase the amplitude of other modes, these
effects were neglected in this simple model.

The generalized masses of the diaphragm, the piezoelectric ceramic, and the attached
accelerometer are constants. They were computed using equation (5) with their known
geometries and densities. The generalized mass of the primary drop is a function of
its actual mass and the drop shape. Here, the drop was assumed to have the shape
of a spherical cap with a contact angle of 70◦. This value of the contact angle was
estimated from the drop image shown in figure 1(a). The spherical-cap shape is an
approximation, but it is sufficient for the accuracy required in the present model.
The generalized mass of the residual droplets is also a function of their mass and
distribution. The residual droplets are assumed to be uniformly distributed over the
diaphragm and so the integration volume is just a uniform layer covering the extent
of the diaphragm. Part of the diaphragm is still covered by the primary drop, so
the part of the residual mass that corresponds to this region could be thought of as
falling back into the primary drop. The main drawback of this model of the residual
mass is that it does not allow this mass to fall back into the primary drop and to
be ejected again. Because of this, the model does not capture all of the features of
the response that are seen experimentally, as will be discussed in the next section.
However, the incorporation of the residual mass into the model does allow for some
redistribution of the liquid on the diaphragm, as was observed in the experiments.

The functions used for the nonlinear damping and stiffness are

c(x) = c1 − c2 exp(−c3x
2), (6)

k(x) = k1 + k2 exp(−k3x
2). (7)

These functions, including the values of the constants, were determined to fit the
steady-state response of the system computed by the model to the response seen
experimentally for an unloaded dry diaphragm. The forcing coefficient, A = pfV , is
directly proportional to the amplitude of the forcing voltage, V . The proportionality
constant, pf , was also chosen to fit the model to this data. The experimental data used
to do the fitting, and the corresponding results from the model are shown in figure 9.
In this figure, the steady-oscillation acceleration amplitude of the diaphragm is plotted
as a function of the forcing frequency for three forcing voltages. The experimental
data are shown by the symbols. The model results are shown by the solid lines.
There is good agreement between the model and the data, indicating that the stiffness
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Figure 9. A comparison of the results from the mathematical model to the experimental data for
an unloaded dry diaphragm with three r.m.s. voltage values: 0.16 V (•), 1.85 V (�), and 4.06 V
(N). The solid lines are the results from the model and the symbols are the experimental data. The
linearized resonance frequency of the unloaded diaphragm–drop system is about 982 Hz when more
low-voltage data are used to extrapolate down to zero voltage.

and damping functions and all other associated parameters that were chosen for
the model provide a reasonable representation of the material characteristics and
behaviour of the unloaded diaphragm in this range of forcing parameters. When
the forcing voltage is increased further the diaphragm stiffness changes sign and
the model predicts the resonance frequency less accurately. The unloaded response
outside of this frequency range was not investigated. Placing a liquid drop on the
diaphragm modifies the damping and stiffness of the system to a small degree, but
these effects were neglected.

The remaining parameters in the model are the droplet-ejection rate, r, the critical
acceleration, ac, and the fraction of ejected droplets that fall onto the diaphragm,
p. These parameters were chosen so that the model matched the experimental data
for the transient response of the system for a set of cases in which droplet ejection
occurred. Four forcing voltages were used, all with a forcing frequency of 1.04 times
the initial resonance frequency. The initial resonance frequency is defined to be the
resonance frequency of the drop–diaphragm system before any droplet ejection has
occurred. The experimental data that were used and the results from the model are
given in figure 13, § 5. The model parameters were chosen so that the 5.91 V case
corresponded correctly to no droplet ejection and the peak amplitudes of the 6.20
and 6.79 V cases occurred close to the correct times.

In summary, a one-dimensional, nonlinear, spring–mass–damper system with a
coupled mass-loss function is used to model the diaphragm–drop system and to
simulate its response to a piezoelectric driving force. The diaphragm is the oscillator in
the model and droplet ejection is modelled with the mass-loss function. Experimental
results were used to determine the forms of the stiffness and damping functions and
other model parameters by fitting the model simulations to experimental data. The
model parameters are held fixed in all the results presented in the next section. The
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Figure 10. The effect of the generalized drop mass on the constant-amplitude oscillation of the
diaphragm–drop system without droplet ejection for a 0.74 V (r.m.s.) forcing amplitude. The solid
lines are the results from the mathematical model. The symbols are experimental data: 0 g (•), 0.1 g
(�), and 0.2 g (N).

model was designed to be as simple as possible while still capturing the underlying
physics and behaviour of the experiments.

To prevent a possible misunderstanding of this model, note that there is a large
body of literature in which a spring–mass–damper model is used to simulate the
nonlinear dynamics of a dripping faucet. This model was introduced by Shaw (1984)
and Martien et al. (1985). The difference between that spring–mass–damper model and
the one presented here is that the drop-bursting equations (1)–(4) model an oscillating
metal diaphragm and its response to the mass loss of a supported liquid drop when
droplet ejection begins. The dripping–faucet equations model the oscillation of a
liquid drop hanging from a faucet and the response of the drop as fluid is added to
it by flow through the faucet. This latter model is used in an attempt to determine
the onset of droplet formation and its chaotic behaviour. Both models use similar
equations, but the modelled systems are quite different and should not be confused
even though droplet formation or ejection is a common event in both situations.

5. Results
The effect of adding a drop to the diaphragm on the constant-amplitude oscillation

of the system is shown in figure 10. The constant acceleration amplitude is plotted
as a function of the forcing frequency for three cases: the unloaded diaphragm, the
diaphragm with a 0.1 g drop (volume = 100µl), and the diaphragm with a 0.2 g drop
(volume = 200 µl). (These mass values are for the generalized drop mass.) The forcing
amplitude is 0.74 V (r.m.s.), which is small enough so that droplet ejection does not
occur. An increase in the drop mass lowers the resonance frequency and acceleration
amplitude of the system.

The mathematical model predicts the decrease in the resonance frequency quite
well, but overpredicts the decrease in the peak resonance amplitude. The model peak
amplitude is about 14% lower than the experimental peak for the largest drop mass
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Figure 11. The response of the diaphragm–drop system to a forcing frequency of 0.99 times the
initial resonance frequency of the system of 785 Hz. The initial drop volume is 200 µl. (a) The
measured system-acceleration amplitude, (b) the simulated system-acceleration amplitude, and (c)
the simulated generalized mass of the liquid drop.

considered. The discrepancy is primarily due to the fact that the structural parameters
for the model were optimized for a system acceleration response of about 100 g. The
experimental data in figure 10 do not exceed an acceleration of 50 g so as to prevent
any droplet ejection. Note that when droplet ejection does occur the primary drop
mass will decrease and so the resonance frequency of the diaphragm–drop system
will increase in time. This dependence of the system resonance frequency on the drop
mass is the key to understanding the transient behaviour of the system, particularly
the bursting phenomenon.

For the remainder of the results in this section, the initial mass of the drop
will be 0.2 g (volume = 200 µl). The transient response of the system is shown in
figure 11 for three forcing voltages and a forcing frequency that is 0.99 times the
initial resonance frequency of the diaphragm–drop system. Figure 11(a) shows the
experimentally measured acceleration amplitude, figure 11(b) shows the acceleration
amplitude computed by the model, and figure 11(c) shows the generalized mass of
the liquid drop on the diaphragm as computed by the model.
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Figure 12. As figure 11 but for a forcing frequency of 1.01 times the initial resonance frequency of
the system of 785 Hz.

The forcing voltage is turned on at a constant value resulting in a very brief
transient during which the system acceleration amplitude jumps above the critical
value. Secondary droplets are ejected, the system mass decreases, and the system
resonance frequency increases. Since the forcing frequency is less than the initial
resonance frequency, the system moves farther away from resonance during this
process. This causes the system acceleration to decrease, which in turn causes droplet
ejection to slow and eventually to stop. All three cases have essentially the same
behaviour except that the larger forcing voltages result in larger initial accelerations
and more droplet ejection. All cases reach a constant-amplitude periodic oscillation
when the acceleration reaches the critical value, at which time droplet ejection stops.
Therefore, all three cases have the same final acceleration amplitude, although the
final values of the drop mass are different. Note that although the model somewhat
overpredicts the response amplitude, it is in the correct range and the system behaviour
is well-captured qualitatively. The liquid mass was not measured in the experiments,
except for the initial mass, so the model is useful in providing an idea of the transient
variation of the liquid mass.

Similar results are presented in figure 12 for a forcing frequency of 1.01 times
the initial resonance frequency of the diaphragm–drop system. Initially, the response
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Figure 13. As figure 11 but for a forcing frequency of 1.04 times the initial resonance frequency of
the system of 785 Hz.

acceleration is above the critical value, so droplet ejection occurs. As in the case
shown in figure 11, the system mass decreases and the resonance frequency increases,
but now the system moves towards resonance since the forcing frequency was initially
above the resonance frequency. This causes the acceleration amplitude to increase
and the droplet-ejection rate to increase. This continues until the system reaches the
resonance condition and the acceleration reaches a maximum. After this the system
moves away from resonance, the system acceleration decreases, and droplet ejection
slows and finally stops. The drop may appear to be bursting as the system moves
towards resonance and the droplet-ejection rate increases, if the forcing voltage is
large enough. In such cases, the system reaches resonance more quickly, as indicated
by the earlier location of the acceleration peaks in figures 12(a) and 12(b). However,
the drop does not completely burst since there is still more than half of the initial drop
mass left on the diaphragm when the system finally reaches a constant oscillation
amplitude. The amplitudes of the peak accelerations are overpredicted by the model
by no more than 15%.

Figure 13 is the one case where the critical acceleration for droplet ejection and the
droplet-ejection rate parameters were chosen to best fit the data. Here, the forcing
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frequency is 1.04 times the initial resonance frequency of the diaphragm–drop system.
At this higher initial frequency, it takes longer for the system to reach the resonance
peak and the peak accelerations for the different driving voltages are more spread
out in time.

Since the system starts farther from resonance the initial acceleration and droplet-
ejection rate are smaller. As seen in figure 13(c), the speeding up and then slowing
down of droplet ejection is more pronounced than in the previous case, and the
drop loses about 75% of its initial mass. For the lowest forcing-amplitude case, the
acceleration does not exceed the critical value and so droplet ejection does not occur,
as intended. As in the previous two cases, the model overpredicts the system-response
acceleration by at most 16%.

The experimental system-acceleration amplitude traces of figure 13(a) and the
simulated traces of figure 13(b) are the signatures of drop bursting. Visually, the drop
surface is in a state of very chaotic wave motion, like that seen in figure 1(e). Then
droplet ejection begins and, quite suddenly, the drop bursts into a spray of smaller
secondary drops. When the spray disappears, only a much smaller drop remains on
the diaphragm along with some residual secondary droplets that have fallen back
onto that surface.

In figure 13(a), the three cases in which droplet ejection occurs have a second,
smaller peak in amplitude after the first one. This peak occurs for other forcing
frequencies as well, although it is less pronounced. This small peak is due to the
behaviour of the ejected secondary droplets. Droplets that fall back on the primary
drop eventually coalesce with it, and some of the droplets that fall on the diaphragm
tend to travel toward the centre of the diaphragm and coalesce with the primary
drop. These events increase the generalized mass of the system, which decreases
the resonance frequency and brings the system back towards resonance. Thus, the
system-response amplitude and the droplet-ejection rate increase. This event appears
as a second burst of the primary drop, although it is not as vigorous or as large as
the first one. This phenomenon is not captured by the mathematical model because
the model does not allow for any movement or coalescence of the secondary droplets
with the primary drop. The secondary droplets are assumed to land on the diaphragm
uniformly and to stay where they are. However, the understanding of the initial
burst, as gained from the model, along with the observation that the residual droplets
do travel to the centre of the diaphragm and coalesce with the primary drop leads
naturally to this explanation of the second mini-burst.

One advantage of the mathematical model is that it allows the simulation of
the system response in parameter ranges that are out of reach experimentally. For
instance, figure 14 shows the system response for forcing voltages of 20 and 40 V
(r.m.s.) and a forcing frequency 1.13 times the initial resonance frequency. (Note: while
such large voltages could be applied to the transducer, the resulting motion of the
diaphragm would be so large that the piezoelectric ceramic could delaminate or crack.
Thus, 25 V was used as the maximum allowed forcing voltage in these experiments
in order to prevent any accidental damage to the transducer.) In both cases, droplet
ejection begins immediately and the system moves closer to resonance as the resonance
frequency of the system increases. However, before the acceleration amplitude reaches
the resonance peak, the drop mass becomes zero as shown in figure 14(b). With
no more liquid to eject, the diaphragm just continues to vibrate in this state of
high-amplitude acceleration as seen in figure 14(a). These two events are examples of
instantaneous drop bursting. Figure 2 shows an experimental visualization of such an
event, although not at such large forcing voltages.
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Figure 14. The response of the diaphragm–drop system to a forcing frequency of 1.13 times the
initial resonance frequency and for two very large forcing voltages. The initial drop volume is 200 µl.
(a) The simulated system-acceleration amplitude, and (b) the simulated generalized mass of the
liquid drop.

In figure 15, the system response is presented in a different way. The transient
system-acceleration amplitude is cross-plotted as a function of the generalized mass of
the liquid drop, with time as a varying parameter along each curve. The experimental
transient results of figures 13(b) and 13(c) are shown by the symbols for three forcing
voltages. In each case, a symbol represents one instant in time, with time increasing
from right to left. The forcing frequency is 1.04 times the initial resonance frequency
of the diaphragm–drop system. The data represented by the lines were computed
by setting the droplet-ejection rate to zero, fixing the drop mass, fixing the forcing
parameters, and calculating the acceleration amplitude of the final constant-amplitude
oscillation. This gives the response of the system to the forcing without any droplet
ejection. The excellent agreement between the transient data (the symbols) and the
constant-amplitude oscillation data (the lines) shows that the transient acceleration re-
sponse is quasi-steady. This is expected since the time scale for the droplet-ejection re-
sponse is about 100 to 1000 times the time scale for the system oscillations themselves.

6. Discussion
The VIDA bursting phenomenon examined in the previous section has two essential

components. The first is the purely fluid-dynamical process of capillary wave motion
that forms on the free surface of the drop and its consequences. As the forcing
amplitude increases, these waves develop in a complex manner, interact with each
other, and finally lead to the formation of a crater and then an intense liquid jet.
At the tip of the jet a droplet forms, pinches off, and is ejected from the primary
drop. The details of this part of the bursting phenomenon, as shown in figures 3–5,
is examined in James et al. (2003).
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Figure 15. A comparison of the simulated constant-amplitude oscillation response of the system
(solid lines) and the simulated transient response (symbols) for a forcing frequency of 1.04 times the
initial resonance frequency of the diaphragm–drop system of 732 Hz, and for three r.m.s. voltages:
6.20 V (•), 6.50 V (�), and 6.79 V (N).

The second component of drop bursting is the fluid/structure interaction process
in which the vibrating diaphragm interacts with the fluid drop mass that sits on it
and that varies as droplet ejection occurs. The final goal of the present paper is to
clearly explain this fluid/structural-dynamics process through which drop bursting
takes place.

To simplify the following discussion and to clearly demonstrate the basic physics
of the drop bursting process, the mathematical model presented in § 4 is revisited
and four additional simplifications are made. First, note that there are two distinct
time scales in this problem. The first is the time period of the forced oscillations,
which is in the neighbourhood of τf = 1 ms for driving frequencies near 1000 Hz. The
second time scale, τd, is the time over which the atomization process occurs. Based
on experimental results, τf � τd. This result is also proven by the data plotted in
figure 15. A formal multi-scale analysis of equations (1)–(4) leads to the conclusion
that the structural-vibration equation (1) decouples from the mass-loss equation based
on droplet ejection (3). Thus, one can solve for the constant-amplitude oscillations
of the diaphragm with a fixed drop mass first and then input this result directly
into the drop-mass-loss equation afterwards. Following this formal separation, the
resulting oscillation equation is solved with two further simplifications. First, the
system is linearized by using constants for the stiffness and the structural damping
coefficients of the diaphragm. Second, all transient oscillations in the diaphragm are
ignored and only the steady-state oscillation amplitude is computed. As a result of
these simplifications, the constant acceleration amplitude of the oscillations of the
diaphragm is given by

a = pfVω
2[(k − mω2)2 + c2]−1/2. (8)

This equation shows that the acceleration amplitude goes to zero as the driving
frequency goes to zero and it approaches a constant as the driving frequency becomes
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Figure 16. A surface plot of the acceleration amplitude for the linear drop–diaphragm system
driven at 12 V (r.m.s.). The two black lines show the time history of the system driven at 765 Hz
and 804 Hz. The time is zero at the top of the black curves (drop mass = 0.2 g) and increases as
one moves down the curves toward a zero drop mass. The resonance frequency for the unloaded
diaphragm is 887 Hz and for the fully loaded system it is 773 Hz.

large. There is also a resonance peak that is shown in figure 16 as a surface whose
elevation is the system-acceleration amplitude as a function of the driving frequency
and the generalized mass of the primary drop. This figure shows that as the drop
mass increases the system resonance frequency decreases, as expected. This result is
also seen in the experiments and the full simulations shown in figure 10.

The time history of the drop mass during droplet ejection caused by this acceleration
amplitude was found by integrating the droplet-ejection equation (3) along with the
acceleration-amplitude equation (8). The same matlab integration routine was used as
before, ode45. The fourth and final simplification is to ignore the secondary droplets
that fall back on the diaphragm by ignoring the residual droplet equation (4). Two
computed trajectories with different frequencies, but with the same driving voltage
are plotted in figure 16. Each of these trajectories starts with the diaphragm fully
loaded with a primary drop of generalized mass 0.2 g. Note that for the purposes
of this discussion, the diaphragm is considered fully loaded whenever the 0.2 g drop
is present. However, this is just a convenience and the arguments presented in this
section hold equally well if a different initial drop mass is used. In figure 16, two
system trajectories are shown: one has a driving frequency less than the fully loaded
diaphragm resonance frequency and the other has a driving frequency greater than the
fully loaded diaphragm resonance frequency. The trajectories start at a drop mass of
0.2 g and end at the small black filled circles. The curve for the lower frequency shows
that the diaphragm acceleration amplitude steadily decreases until the system reaches
the critical acceleration for droplet ejection. At this point, the diaphragm continues
to vibrate with a much smaller drop on its surface. While there was droplet ejection,
there was no bursting. The acceleration never reached a large maximum because the
driving frequency was less than the resonance frequency and always decreased. At the
higher driving frequency, the trajectory of the system passes through an acceleration
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Figure 17. (a) System-acceleration amplitude contours for the low-voltage case of 4 V (r.m.s.).
(b) System-acceleration amplitude contours for the high-voltage case of 16 V (r.m.s.). The outer
contours in each plot are the contours for 152 g, the threshold for droplet ejection. The driving
frequency for both cases is 765 Hz, a frequency 0.99 times the loaded diaphragm–drop resonance
frequency. The increment between successive contour lines is 80 g.

maximum, causing a rapid burst, and then continues to eject secondary droplets until
the entire initial drop has been removed from the diaphragm.

Another way to visualize these data is to replot equation (8) as a contour plot in
frequency and drop mass as shown in figure 17. Now, consider two cases in which
the driving frequency is less than the fully loaded diaphragm resonance frequency
and the driving voltage is large enough to cause droplet ejection. The dynamics of
the diaphragm–drop system can be determined by following the two vertical lines in
figure 17 straight down until they stop at the small black filled circles. The plots show
that both the mass of the drop and the system acceleration amplitude monotonically
decrease until the acceleration reaches the critical amplitude for droplet ejection
(figure 17a) or until the drop mass has all been ejected (figure 17b). The system then
vibrates unchanged and the mass of the drop stays constant or it is not present. This
is quantified in the time-history plots of drop mass and system-acceleration amplitude
shown in figure 18. For both cases, the mass of the drop and the system-acceleration
amplitude monotonically decrease. However, in the high-voltage case there is enough
droplet ejection to completely remove the drop from the diaphragm and then the
diaphragm continues to vibrate with an acceleration amplitude that is higher than
the critical acceleration. For the low-voltage case, droplet ejection occurs until the
system reaches the critical acceleration amplitude for droplet ejection (152 g). After
this, the drop–diaphragm system continues to oscillate at that acceleration level. In
each case, this monotonically decreasing mass loss is not a bursting event, although
it is still VIDA.

Next, consider two cases in which the driving frequency is greater than the fully
loaded diaphragm resonance frequency. The dynamics for these cases are shown in
the contour plots of figure 19 and the associated time-history plots of figure 20.
For the lowest-voltage case, the system-acceleration amplitude starts at 150 g, just
below the critical acceleration for droplet ejection, and so the system vibrates with a
constant acceleration amplitude and there is no droplet ejection (figure 20a, b). For
the second lowest-voltage case, the system acceleration starts at 153 g, just above
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Figure 18. (a) The time history of the drop mass with time measured in periods of the forcing
frequency for four different voltages. (b) The time history of the drop–diaphragm system-acceleration
amplitude in units of g with time measured in periods of the forcing frequency for four different
voltages. The driving frequency for all cases is 765 Hz, a frequency 0.99 times the fully loaded
diaphragm–drop resonance frequency.

the critical acceleration (figure 19a). The system vibrates and there is a slow mass
loss due to droplet ejection as shown in figure 20(a). As the mass decreases, the
system resonance frequency increases toward the driving frequency and the amplitude
of the oscillations increases. In time, the system moves rapidly through resonance
and attains the highest acceleration and the fastest mass loss possible. This rapid
droplet ejection is the signature of a bursting event. For this voltage, 90% of the drop
mass is lost during the crossing of the resonance peak over a time period of about
2.5 s. After the burst, the mass and acceleration amplitude continue to decrease until
the acceleration amplitude reaches the critical value. After this time, the diaphragm
continues to vibrate at the critical acceleration amplitude with a smaller primary drop
remaining on its surface.

In the high-voltage case, the result is similar. The difference is that the acceleration
amplitude starts at a higher value. Thus, the rate of droplet ejection is higher initially
and the crossing of the resonance acceleration amplitude peak occurs earlier and it
is faster. Here, 90% of the drop mass is ejected in about 1.2 s. After about another
0.5 s, the entire drop mass is gone and the system stays at a constant acceleration
amplitude of 194 g, well above the critical value of 152 g.

A comparison of the results of the linear model of figure 20(b) to those of the
full nonlinear coupled model given in figure 13(b) and the experimental results of
figure 13(a) shows that the linear model has captured the essence of the drop-
bursting process. Notice though that the linear model is much less sensitive to the
driving voltage than either the nonlinear model or the experiments. Despite this
loss of sensitivity, the linear model is a simple way to demonstrate that VIDA drop
bursting is an unusual resonance phenomenon in which the driving frequency is fixed
above the resonance frequency of the system and the mass loss due to droplet ejection
causes the system to move through its resonance frequency. In doing so, the system
undergoes a rapid increase in droplet ejection in which the drop appears to burst
or explode into a spray of smaller secondary droplets. At the end of this process,
the drop has either completely disappeared or else there is a very small drop left to
vibrate on the diaphragm.
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Figure 19. (a) System-acceleration contours for the low-voltage case of 5.1 V (r.m.s.). (b) Sys-
tem-acceleration contours for the high-voltage case of 12 V (r.m.s.). The outer contours in each plot
are the contours for 152 g, the threshold for droplet ejection. The driving frequency for both cases
is 804 Hz, a frequency 1.04 times the loaded diaphragm–drop resonance frequency. The increment
between successive contour lines is 80 g.

7. Conclusions
This paper has introduced and characterized a new atomization process called

vibration-induced drop atomization (VIDA) and a dramatic companion event called
drop bursting. The bursting process combines the fluid dynamics of droplet ejection
from a vibration-induced jet emanating from the free surface of a liquid drop and the
dynamics of a vibrating drop–diaphragm system. Bursting occurs when the driving
frequency is above the initial resonance frequency of the drop–diaphragm system
and the driving voltage is above a critical value for droplet ejection. The mass loss
due to droplet ejection continually increases the system resonance frequency until it
equals the driving frequency. Naturally, this results in a resonance event in which
the acceleration amplitude of the oscillations becomes very large. This makes the
droplet-ejection rate so large that the drop appears to burst or explode into a spray
of small secondary droplets. After bursting, if some of the liquid drop remains on
the diaphragm, the system continues to oscillate with decreasing amplitude and the
droplet-ejection rate decreases. The event stops when either the initial drop has
disappeared or the system-acceleration amplitude reaches the critical acceleration
amplitude for droplet ejection.

If the driving frequency is above the system resonance frequency and the initial
system-acceleration amplitude is high enough, the rate of droplet ejection will be
very large and the drop may appear to burst immediately. The time delay for the
bursting event depends on two parameters: the difference between the initial system-
acceleration amplitude and the critical acceleration amplitude; and the difference
between the driving frequency and the initial system resonance frequency. As the
acceleration difference decreases, the time delay for bursting to occur increases. This
is illustrated explicitly in the experimental results (figure 13a), the results from the
nonlinear mathematical model (figure 13b), and the results from the simple linear
model (figure 20b). When the frequency difference decreases, the time delay for
bursting also decreases. This is illustrated in the experimental results of figures 12(a)
and 13(a) and the numerical results of figures 12(b) and 13(b).



26 A. J. James, B. Vukasinovic, M. K. Smith and A. Glezer

0.20

0.15

0.10

0.05

0 2000 4000

Time (periods)

D
ro

p 
m

as
s 

(g
)

(a)
800

600

400

200

0 2000 4000

Time (periods)
A

cc
el

er
at

io
n 

(g
)

(b)

6 V

12 V

5 V

5.1 V

#

#

5 V5.1 V

6 V

12 V

Figure 20. (a) The time history of the drop mass with time measured in periods of the forcing
frequency for four different voltages. (b) The time history of the drop–diaphragm system-acceleration
amplitude in units of g with time measured in periods of the forcing frequency for four different
voltages. For the 5 V (r.m.s.) case, the system is vibrating at 150 g, which is below the critical
acceleration level of 152 g, and so there is no droplet ejection. The driving frequency for all cases is
804 Hz, a frequency 1.04 times the fully loaded diaphragm–drop resonance frequency.

If the driving frequency is set below the system resonance frequency and the initial
system-acceleration amplitude is above the critical acceleration amplitude for droplet
ejection then all one sees is a steadily decreasing rate of droplet ejection until either
the initial drop has disappeared or the system-acceleration amplitude reaches the
critical value for droplet ejection. The process is still droplet atomization or VIDA,
but it is not a bursting event as defined in this paper.

The experiments described in § 3 and the visualizations shown in § 2 dramatically
demonstrate that the VIDA-bursting process and the nonlinear mathematical model
discussed in § 4 have successfully isolated the essential physics of the process. The
mathematical model has several drawbacks though. Its parameters and the stiffness
and damping functions were chosen to fit the model results to the experimental results
for a particular piezoelectric diaphragm and for a particular liquid, i.e. water. Also,
some of the assumptions used in constructing the mathematical model may not be
exactly correct. For example, the work of Goodridge et al. (1997) suggests that the
critical acceleration is a function of the forcing frequency. This dependence was not
included in this model. Despite these shortcomings, the nonlinear mathematical model
has served the purpose of helping to elucidate the behaviour and physics of VIDA
and the drop-bursting process. This is made very clear in the success of the linear
bursting model of § 6 in mimicking the effects seen in experiments.

The key to the VIDA process and especially to the VIDA drop-bursting event
investigated here is the use of a vibrating diaphragm driven by an integrated piezo-
electric actuator. This low-mass device yields acceleration amplitudes well above the
150 g level that are needed to eject small secondary droplets from the larger drop and
even from a thin liquid film at the ejection rates that are the hallmark of VIDA. It is
possible to produce the VIDA effect with a stiff driver (e.g. a mechanical shaker) if it
could reach the required acceleration levels. Mechanical shakers that can attain these
acceleration levels require high-power levels, and are large and expensive. In contrast,
piezoelectric actuators require low-power levels, and are small and inexpensive.
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Finally, a series of experiments and numerical studies are underway that will yield
a detailed understanding of the process through which individual droplets are ejected
from a free-surface wave crest. The numerical work of James et al. (2003) uses a
VOF method to compute the motion and deformation of the vibrating drop all the
way to droplet ejection. Related experiments by Range, Glezer & Smith (2003) use
a mechanical shaker to look at droplet ejection from single small sessile drops. This
kind of detailed information is needed in order to determine the critical acceleration
and the rate of droplet ejection used in the nonlinear system model described above.
Attaining this level of understanding of the droplet-ejection process will allow the
optimization of VIDA technology for use in many different kinds of engineering
systems.

There are many potential uses of the VIDA process and current research is exploring
several. VIDA bursting is effective for spray cooling of microprocessors and spray
coating of a solid surface. It may be effective to use this process for the atomization
of fuel for spray-injection nozzles, as a fluid-emulsification system, and for droplet
encapsulation of time-released drug-delivery systems.

This work was supported by the NASA Microgravity Research Division under
contract NAG3-1945.
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